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INTRODUCTION

Existing analytical models for the prediction of wave excitation of ocean structures assume
that the amplitudes of waves and structure motions are small in comparison with the wavelength
and the nominal dimension of structures. Thus, the diffraction waves from the structure may be
approximated by a simple harmonic function. These assumptions preclude their application in
severe sea states. Large waves, in fact, present a much steeper profile than that of a simple
harmonic function. A precise description of the wave kinematics requires retention and proper
treatment of higher order terms of the equation of motion and a proper specification of the water
body boundary at the free surface. These two factors, which are ignored in linearized
approximations, are the principle sources of wave nonlinearity. When these nonlinear effects are
included in the diffraction of waves by a body there are, at second order, interactions at the sums
and differences of the component frequencies of the incident waves. Although the magnitudes
of these nonlinear effects are, in general, only second order, they act at frequencies away from
that of the ambient wave energy, and may therefore be of primary concern. This is especially
true when these excitations are near the natural periods of the body motions or where restoring
or damping forces are small. With the presence of large waves, second-order effects are
important corrections to the linearized results.

Theoretical developments of the second-order diffraction problem have until recently been
limited. Studies on simple geometry of the uniform vertical circular cylinder were conducted
by Issacson (Ref 1), Chakrabarti (Ref 2), Molin (Ref 3), Wehausen (Ref 4), Hunt and Baddour
(Ref 5), Chen and Hudspeth (Ref 6), Rahman (Ref 7), and Ogilvie (Ref 8). The results are,
however, controversial due to the difficulties in the correct treatment of the second-order free
surface boundary condition and a proper specification of the radiation condition for the second-
order diffracted waves. Previous studies indicate that a weakly nonlinear diffraction problem
may be reduced to a set of linear boundary problems by the perturbation method. Solutions may
be obtained by Green's function method or the finite element method. Kim and Yue (Ref 9)
presented a second-order diffraction solution for an axisymmetric body in constant water depth
following the former approach. The solution gives an explicit second-order flow potential in
terms of wave-source Green functions. The nonlinear forces, accurate to the second order,
include slowly varying drift forces and biharmonic forces, which appear at a frequency twice that
of the incident wave. The present study pursues the finite element method approach, which gives
the possibility of addressing a sloping sea bottom of irregular geometry.

An immediate need for these analytical techniques exists at the Naval Civil Engineering
Laboratory (NCEL) in the design of connectors for a pontoon-supported waterfront facility. The
requirement of including a second-order diffraction force in the assessment of extreme
environmental forces imposed by maximum design waves is an apparent trend in the near future.
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PROBLEM DEFINITION

A mathematical idealization of hydrodynamic couplings between waves and a group of
large floating or fixed structures in water with a free surface is defined in Figure 1. Wave
activity around the structures, hydrodynamic loads on the structures, and the resulting motion
of the structure are investigated. The water body may be open or partially sheltered, and the
water depth may vary. Relevant waves, including incident, scattering, and radiation waves, are
described in a way similar to Stokes' second-order theory. The water body is divided into a
three-dimensional (3D) region 0, and a two-dimensional (2D) region 02' The 3D region
includes areas near structures where the seafloor may change substantially and the 2D region
includes the remaining areas where the seafloor is reasonably flat. In 3D regions, waves are
addressed in detail in 3D space to account for the effects due to irregular geometries of structures
and the seafloor. In 2D regions, waves are approximated by plane wave theories (Ref 10) in
terms of free surface parameters for better computation efficiency. Boundaries of these two
regions are illustrated in Figure 1. These boundaries are the radiation boundary, !r', which

truncates the water domain to a finite area, and the border separating the two regions, F, .
Waves transmitted beyond the radiation boundary are accounted for in a collective form in terms
of parameters on the radiation boundary. Incident waves are specified on the wave input
boundary rF, which coincides with the radiation boundary for convenience, when wind wave
excitations are considered. Other boundaries involved are the sea bottom, rb, the wetted
surfaces of floating structures, Fr, and fixed structures, Fr. Subdivisions of the water body and
the associated boundaries are illustrated in Figure 2.

PROBLEM FORMULATION

A Cartesian coordinate system (OXYZ) fixed to the earth, as shown in Figure 3, is
employed as an inertia reference, where the X-Y plane lies on the mean water surface and the
Z coordinate is measured positive upward from the still water. The responses of a floating body
are described in reference to a body coordinate system, Gxyz, attached to the body, with its
origin G located at the center of gravity of the body. The xy plane is parallel to the static
waterplane and the z coordinate is directed vertically upward. For the purpose of computing
wave drift forces and moments exerted on the body, a third system of coordinate axes (Gi$i)
is defined where its origin is at the center of gravity of the body and is always parallel to the
fixed coordinate system OXYZ.

With the assumption that the fluid is inviscid and incompressible and that the flow is
irrotational, the relevant wave problems can be addressed using potential flow theory.

Assuming weakly nonlinear waves, the total velocity potential 4 is expressed as a
perturbation in the wave slope parameter e a kA < 1:

= 0(1) + C2 0(2) + 0(e 3) (1)
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where:

f(1) = first-order velocity potential

0(2) = second-order velocity potential

Further, k is the incident wave number given by the dispersion relationship C02 = gk tanh (kh),
and g is the gravitational acceleration. The associated free surface profile j7 is decomposed
likewise:

11 = eT•(1') + e2
1 a)+ 0(e 3)

This approximation leads to the decomposition of the otherwise nonlinear boundary value
problem to a set of two linear boundary value problems. The first order problem has been
described in Reference 11. This discussion will be limited to the second order.

The first- and second-order potentials must comply with the Laplace equation and
appropriate boundary conditions as follows.

First-Order Boundary Value Problem

Laplace equation (fluid domain): V2 0(1) . 0 (2)

Seabed and fixed structure boundary: = 0 (3)
an

Floating structure boundary: n =) (4)

an

Free surface: g 1+ = 0 (5)

Radiation condition: lrn A - 0 - i k,0) = 0 (6)

Second-Order Boundary Value Problem

Laplace equation (fluid domain): V2 0(2) = 0 (7)

Seabed and fixed structure boundary: -(--2 0 (8)
an

Floating structure boundary:
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For radiation waves: an = vn (9)
an

For scattered and incident waves:

-= -(x() V) VO(1) -n + (v) - V I)) -N 1) at body surface. (10)an

Free surface:

= + + 0()(00 + 10) onZ = 0. (11)

Radiation condition: outgoing waves from the floating bodies.

In the above, R = (x2 + y2)112 is the radial distance from the origin of the inertia frame,

and 1. is the normal derivative into the body. The second-order problem is complicated by
an

the inhomogeneous forcing term in the free surface boundary condition (Equation 10), which is
given in terms of quadratic products of the first-order potential. The first-order problem is
classical and a variety of numerical solutions are available. For example, a solution using a
finite element scheme has been obtained in a previous study (Ref 11). Equations 10 and 11
correlate 0(2) with 0(1). Hence, 0(2) is completely defined once 0(1) is known.

The first-order velocity potential may be expressed in component waves as follows.:

where:

0(1) = first order incident wave potential

0(') = first order diffction wave potential

B() = first order radiation wave potential

For monochromatic incident waves, the time dependency is separated and rewritten:

0) = [ ) ( ) ] ' (13)
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Substituting Equation 13 into the second-order free surface boundary condition in Equation 11,
a quadratic periodic forcing function is obtained which oscillates at twice the frequency of the
linear waves. As a result, Equation 11 may be written as:

(2) (2) Q(x,y,O)e-it (14)
I~t+ g 0 =~~,~

where the quadratic forcing function Q(x,y,O) consists of nine components as follows:

Q(x,y,O) = QU + %I + QBB + (QIS + QS) + (QIB + QBI) + (QSB + QBs) (15)

where:

Q11  = plane wave forcing function which leads to the ordinary Stokes'
second-order wave component at double frequency 2W

QSSQBB = self interactions of first-order scattered waves and first-order
radiation waves, respectively

Qis,...,Qas = cross interaction of the first-order terms

The details of these components are given in the following:

Qss= i 2 2(V4) -(1)2 (1) i(')s 21 (1) 4,()

r 2

I (1g) 2 (1) 2O ( (1)40(1)
Q-sB WB 2 ( ZZ + -41 * SZ

t Wg
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= (iO) (fV414) 4- (1) 4,(l) + (4) 2 ) ] (16)

S ,•(D '00) + (a .g ').{ ,

QIB = i 2(V og (4))) - Bzz ÷ 4,1 (Bzg

QDI = i 2(V4 •)(v) ) -()VZ + --- 4g)

Qs = i [2(VO$())(V4g)) - 44s),'z + a2 ( 1) 4)]

s hi2(V4og)(V44ý') -. g)4,(1 )z) +),0(1)1

where the subscriptions of spatial coordinates indicate partial differential. These quadratic
forcing function terms behave like a nonuniform pressure field applied to the free surface in first-
order problems as described by Wehausen and Laitone (Ref 12). They generate additional
cylindrical standing and outwardly going progressive waves at the double frequency.

Since Equation 14 is nonhomogeneous, the second-order potential consists of the
homogeneous solution f(2)H and the particular solution t(2)P as:

OCZ) =- M + 2H

-12 + 4(2Z)H)e-12 t (17)

These components satisfy, respectively, the homogeneous and inhomogeneous force surface
condition (Equation 11), and jointly, the inhomogeneous body boundary condifion, Equation 9
or 10. The particular solution may be further separated as:

(2)P 11)+ 0()+ 0 2. I

(18)

+0 +0 +(0 I0I(I
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The homogeneous solution consists of:

4D()H = (2) + OD) (19)

By substituting Equations 18 and 19 into Equation 17, the total second-order potential becomes:

4t(2)+

B(20)

+ C) ()+ 0()+0 2

or

0(2) -=DZ .+ (")(2) + 4 () (21)

where:

4~ (2)s[s2) + 4D(2) + (12 +) 4 C2) + (2) P [ + 40 (2)

D*S Ss BB+(is+ SI)+ 'JB 4BI) + (tBS + )

The component 4•) represents the forced wave motion generated by the Q11 forcing function,

which is the usual second-order Stokes' wave. 0(2) is the second-order scattered wave potential

and L0C2) is the second order radiation wave potential generated by body motion. Both satisfy
the homogeneous free surface boundary condition. Their far field behavior is given by:

1 3

*H r 2 ev +0(r 2),r1

where k2 is the double frequency wave number satisfying 4W2 = gk 2 tanh (kh). This means that,
in principle, these components can be solved by the existing first-order method.

The second-order potential #(2) in Equation 21 consists of three parts: (1) the incident
wave~~~ cmoeto, ()tepud-diffraction OC)3 and (3) the radiation components OC2).

wave component 0 11 (2) the pseudo-ifcto D*

The second-order incident wave potential is given by:

7



(2) 3 3 H(irH' cosh[2 k(d +z e- -j2wt (212)ll 8 kT ýL ) sinh 4 (k d)

The radiation components satisfy the same equations as the radiation potentials of the
first-order potential theory, at the double frequency 2W. Newton's law applies through the use
of Bernoulli's equation in the computation of the second-order wave exciting loads, which results
in the equations of motion at the second ord-r, to be discussed later.

The solution procedure for Equation 14 using finite element method is straightforward,
regardless of the complexity of the forcing function on the right-hand side of the equation.

FINITE ELEMENT FORMULATIONS

According to the calculus of variations (Ref 13), the solution to a boundary value problem
is the potential which minimizes a certain functional, in terms of the governing equation of the
problem. For 0(2), the functional 11(2) can be expressed as:

llQ fff- (Vi( 2
))

2 dQ + f f(4ý)) dS (23)

where:

n1 = fluid domain

Sf = free surface

SB = body boundary

SR = boundary for the radiation condition

The integral (f'f.,) over the unknown free surface in Equation 23 may be approximated

by a Taylor series expansion, in terms of the variables at the mean sea surface.
Solutions for the second-order diffraction and radiation boundary value problems may be

formulated using the standard finite element method. The radiatiop boundary condition is
imposed on a finite boundary, r2 , at moderate distances from the structures of interest. The
entire fluid inside this boundary is divided into two regions. Each region has the functionals
corresponding to its respective governing equations and associated boundary conditions as
follows:

8



For the three-dimensional region:

i1(2) = ff f f (V )d, _ ff2-- ( )2dS
01! Sf g

f f Q(xyO) 4)()dS -f f (vý 8m( dS,- Q- 1 f(vim81m dik (24)

+ ff [(F().V) V ,p),fi + (V,) - V',,O)• . 8 dSk
S.

j = II,D+S,i,k,...
i -1,2,...6
k =1,2,...M

where M is the total number of floating bodies and i4k is that of the radiated waves due to
motion in the ith mode by the kth body, in which i=1,2,...,6 corresponds to the surge, sway,
heave, roll, pitch, and sway modes, respectively. The quantity Q in the third term in the above
equation is given in Equation 15.

For the two-dimensional region:

1,2) = f f= {F" (V ())2 - 4 k2 F( (4))2} dQ2

022

(25)
-f A2as (Radiation Condition for 42), j=I,D+S,i,k...

-f , a n- - i-

The function F* in Equation 25 is the function defined by Equation A-22 of Appendix A.
On r', the three-dimensional region is coupled with the two-dimensional region by the

following relationship:

4 2)(x,y,z) ,42)(x,y) cosh2k(d + z) j=lIS+D,i,k (26)sinh4 (k d)

where d is the water depth.

9



FINITE ELEMENT DISCRETIZATION

The integral Equations 24 and 25 define the velocity potentials of the water flow over the
entire fluid domaii. The fluid and boundaries are thus discretized, as shown in Figure 2, to
conform the finite element applications.

The potential 02)' within each element can be approximated in terms of the unknown

nodal values 14• of that element and interpolation functions IN]. In matrix notation:

02)' = [N] {(?0} (27)

The functional ]1(2) is now minimized with respect to the nodal values 4) for a single
element to determine the flow potential which satisfies the boundary value problem. For tile 3-
dimensional case, Equation 27 can be inserted into Equation 24 and written as:

aI) 3 = (2) = 0 (28)

This being true for any variation, 6 t) requires:

an__• = a0 a(4•))2  (29)

(2)

from which parameters ({o2I are to be determined. Because the functional is quadratic, element
Equation 29 reduces to a standard linear algebraic equation, that is:

= [k]{.,}2) -_fI = 0 (30)a (3O)

This transforms the integral equations into a set of linear algebraic equations in the unknown
value of velocity potential at boundary nodes on all elements.

10



Stiffness Matrix and Nodal Force Vector for the 3D Element

The element stiffness matrix [k] and the element nodal force vector {f} in Equation 30
are given as:

[k] = ff f (VN) T (VN)dxdydz - f f .12' N T NdS (31)
(O)*sf) g

fff = -ff NT(v),AS .'bk
(St)ý

+ffNT[(x(1)v)V)V40j"-n + (v(') -V4') "N(1)]dS ".6k

(32)+ f -NTQ dS
Sf g

vU = normal velocity

x' = the first order displacements

In the above equation, ne and Se denote that corresponding integrations are taken over a single

element only. The velocity potential, e ), at boundary nodes of a single element consists of
three components. These are incident, scattered, and radiated potentials. Hence, the element
equations can be written as:

[k]{4?)} = {f}); j = I1,S+D,i,k (33)

Stiffness Matrix and Nodal Force Vector for the 2D Element

Similarly, the element equation for the 2D case can be derived by taking the

differentiation on the functional 11(2) given in Equation 25 with respect to 4).. Then:

11



aI• =f f {(VN)F'rF(VN)-4k 2F'N T N)dx dy -4' .2)

- f F N'T•dS (34)
(Q.~ an

Tf F aNTN IP(2N a s4c = 0F-jaN N as)i as )J
MO.

and a system of equations for the problem is:

[k(x,y)]{4t)}j = {f(xy))j; j =II,S+D,i,k (35)

with

[k(x,y)] ff{(VN)TF'(VN) -4k 2 F" NT N} dx dy

(36)

+f(xy)J = fF" N NTdS (37)

f an

Equations deducted from the 2D and 3D elements can be assembled to form a set of

global equations pertaining to the entire fluid region. These may be written in matrix form as:

[KJ{,M)} = IF) (38)

The global stiffness matrix [K] is symmetric and banded. Its half-bandwidth indicates
interactions between nodes of an element and its immediate neighbors. Equation 38 may now
be solved numerically.

12



SECOND-ORDER WAVE LOADS ON A FLOATING BODY

Once the second-order velocity potential is determined, the second-order wave loading
on the floating body can be calculated. It is assumed that the vessel undergoes small first-order

motions X(1) from its mean position R(o), and that the pressure can be expanded in a Taylor
series about the hydrostatic pressure at the mean position and the following expression is found:

p = p0) + ep () + c2pC2) + 0(e 3) (39)

where:

hydrostatic pressure: p = - p g Z(°) (40)

first-order pressure: p = _ p g Z(-) _ p dot (41)

(2 -_Ip1# 00 2 - (2 (I' . t 001)

second-order pressure: pC2) = - 2 pIt4() _ p - p(•) (42)

The total hydrodynamic force exerted on the body relative to the coordinate system GiS,
is given by the following equation:

= -ffp,#dS (43)

where S is the instantaneous wetted surface and )7 is the instantaneous normal vector to the

surface element dS relative to system G0#.

• = ) + cNN')

Substitution of the pressure p given by Equation 39 and retaining the integration to the
second order, one obtains:

P = P(o) + P(i) + e2P12) + 0(e 3) (44)

The instantaneous wetted surface S is composed of two parts, So and s (Figure 2). So is the
constant wetted surface up to the still water line and s is the surface between the still water line
and the wave profile along the vessel.

The second-order forces can be calculated by integrating all products of pressure p and

normal vector 9 which give second-order force contributions over the wetted surface So and s:

13



p2) -f f (p) + p2)f)dS - f f p'(ndS (45)
so

Substituting

6(0) X r

into the above equation yields for the first term

_ffpR) = O -x -fp f (1)a"6 (46)
so so

where P(1) is first-order wave exciting force and hydrodynamic reaction force. According to

Newton's second law, P(I) can be written as:

PG) [MI (47)

where [M' is mass of vessel in the air and X () is the first-order acceleration of the center of
gravity of the body. Thus, the first term of the second-order force may be obtained from the
first-order motion dynamics as:

- ff p( 9"(" dS x x M R) (48)
so

The second term of the second-order forces is integrated numerically. The following was
obtained from Equation 45:

_ffp(2)rxds = pf _ j$(1)I2 + (2 + jZO . ol)dS (49)
So So

14



The integral of the oscillating surface s is calculated to the linearized free surface by substituting
p(M from Equation 41:

-ffp(')i•ids = -ff(-pgz(l) - P ID,))f )dS (50)
S 3

where the surface element is written as:

dS = dZ(1) .dl (51)

At the still water line, the linearized free surface condition to first order is:

_ p 0!" = p g co) (52)

where (M is the first-order free surface elevation. Inserting Equations 51 and 52 into Equation
50 results in the following:

_fpO) fidS - f fl& (53)

2 WL

in which 4(l) is the relative wave elevation defined by:

,()) = C -l)_ Z4L (54)

The final expression for the total second-order force thus becomes:

P(2)=- f _I Pg(C'l) 2fdl+ xiiX

WL2
(55)

- - p - .

15



The second-order force given in Equation 49 can be divided into a steady component and a time-
dependent biharmonic wave exciting force. The steady component is a second-order steady wave
drift force calculated from Equation 49 by taking the time average over one wave period. Since
the flow is periodic, the time average value of Cr is zero. As a result, the second-order steady
wave drift force becomes:

f(2) = (2) f (1 p o() i i+61
WL 

)

(56)

+ f f [! IV 00)1f2 + 0()+ (X0) V 01))]ildS (6SO2

For regular waves

p ff ),22dS = 0

Thus, the second-order force can be written as:

P(2) = ID + R,, {f) ei2ot) (57)

where f(2) is the second-order biharmonic wave force and is given by:

W 4g 0(58)

ff [_ p(V40())2 +2ipcp4P) +2iwo(')'V4(1))lfds

16



where:

4DO) = 0)(ei~ t

0(2) = 42) eiwt

=• * •ei~t

•(1)= 1)et

Z(O = i(l) riot

y =

The total hydrodynamic moment about the center of gravity of the vessel relative to the
coordinate system GiM is given by Equation 5:

f= -ffp(A )dS (59)
S

The derivation is analogous to that followed for the forces. The final expression for the second-
order wave moment is:

= (2)p g )(Ixfi)dl + W) x(1 []6)

WL2
(60)

-ff[~P~(I -- 2 t I~I o(I)J x fi) dS

EXPERIMENTAL STUDY

Test Setup and Procedures

A hydraulic model was designed to observe the coupling process of a fixed barge with
nonlinear waves in shallow water. The experiment was conducted in a two-dimensional wave
tank at the Civil Engineering Laboratory of Texas A&M University. Figure 4 illustrates the
general setup of the experiment. The tank was 36 meters long, 0.91 meter wide, and 1.22
meters deep. The water depth was maintained at a constant of 20.3 cm throughout the entire
experiment. A rectangular box (101.6 cm by 33.9 cm by 8.4 cm) was placed at roughly 11
meters from the wavemaker and centered in the tank, to simulate a barge afloat at the water
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surface. The box was mounted to a rigid aluminum frame with three legs as shown in Figure
4. The box was further ballasted to a neutrally buoyant condition at the draft of 8.4 cm in the
still water

Two load cells were placed at the end of each of the three legs to measure the horizontal
and vertical forces, respectively. Each cell provided a capacity of 50 pounds at an accuracy of
+ 1 percent of the force applied. The total forces and moments were deduced from these
measurements.

A significant influence on the wave activity around the test model due to the close
proximity of side walls of a narrow wave tank is anticipated. The wave forces imposed on the
test model will be different from those experienced in an otherwise open water. However, this
test was intended for validating the numerical procedure. The side walls of the wave tank were
simulated in the numerical procedure to give a fair comparison between the physical and
numerical models.

The experimental waves were generated by a computer-controlled Commercial Hydraulics
RSW 90-85 dryback, hinged-flap wavemaker. The water pumped by the flap traveled down the
tank channel and evolved into shallow water Cnoidal waves before it reached the barge. Two
resistance-type wave gauges were used to monitor the wave profiles. One was placed at 75 cm
forward of the bow along the center line of the tank, and the other at 47 cm aft of the bow,
centered between the box and the side of the tank. The accuracy of the gauges was ±1 rmm.
Four wave periods were selected intentionally to avoid the resonance frequency of the wave tank.
Six wave heights in the range that promised results of well defined Cnoidal wave profiles were
chosen for each wave period. The wave parameters used in the test are summarized in Table 1.
The Ursell number of these waves varied from 0.5 to 70.

Data acquisition was accomplished using a Hewlett Packard HP-3852A data
acquisition/control unit with an HP-330 workstation. This system was equipped with a 10-
channel relay multiplexer (HP-44718A) and an integrating voltmeter operating at a 5-1/2-digit
resolution (HP-44701A). Details of the test setup and procedures are described in Reference 14.

Test Results

Twenty-four sets of time history of the wave profiles and the horizontal and vertical
forces were recorded. A sample set of these measurements is ,hown in Figure 5. The incident
wave elevation shows good agreement with that predicted by the Cnoidal wave theory in both
wave height and period. However, it is noted that the experimental wave is asymmetric in
contrast to the asymmetric mathematical form. This discrepancy grows as the wave height
increases. This results from the wave generation mechanism used in the test. The force time
histories are similar in shape to that of the wave profile. The time histories of all measurements
are decomposed by Fast Fourier transform up to the third harmonic as follows:

3 X a
X(t) = X0 + 1 •-cos (nlt + e)

U-1 2
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where:

Xo = the mean value

X. = height of the nth harmonic component

en = the phase angle

w = base frequency

The symbols H, X, and Z represent the wave height and the double amplitudes of the
forces in the horizontal and vertical directions, respectively.

It was found that all the mean values and the third harmonics were negligibly small in
comparison to the first and the second harmonics, and are therefore not discussed. The results
of decomposition of the waves are shown in Figure 6. The height ratios of each harmonic
component to the resultant wave height were plotted versus the resultant wave height. The same
ratios deduced from the theoretical Cnoidal waves are presented in dashed lines in the same plots
for comparison with the measurements. The measurements are almost identical with their
theoretical counterparts. It is noted that, for the short period waves, the height ratios remain
essentially constant over the range of the total wave height considered. For the long period
waves, these ratios vary nonlinearly with the increase of total wave height with the first harmonic
component decreases and the second harmonic increases. This result clearly demonstrates the
typical nonlinear characteristics of the shallow water waves.

The force time histories are decomposed likewise. For convenience, the components are
further nondimensionalized in the form of force coefficients as follows:

Cx = Xi
pHilb

C ZI
pHilb

where p is the specific weight of water and "I" and "b" are the length and the beam of the box,
respectively. These force coefficients are equivalent to the ratios of the heights of the first
harmonic forces to the first harmonic wave height. Figure 7 indicates that these coefficients
remain constant at a specific wave period. This implies that the heights of the first harmonic
forces are linearly correlated to the height of the first harmonic wave. The second harmonic
terms H2, X2 , Z2 are plotted as functions of the first harmonic wave height H, squared as shown
in Figure 8. The units are given in cm for H2 , Newtons for force harmonics, and cm2 for H1

2 .
The results, which closely fit the first-order regression line, indicate that the second harmonic
terms X2 , Z2, and H2 are linearly correlated to the square of the first harmonic wave height.

The proportionality constants for X2 monotonically increase as the wave period increases,
whereas the constants for Z2 generally increase but slightly fluctuate. The proportionality
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constants for H2 increase as the wave period increases, although the constants are generally very

small compared to those of the forces.

Nondimensional Forces and Wave Heights Versus the Ursell Number

The first and second harmonics of the forces and incident wave height are non-
dimensionalized by dividing them by their respective resultants, then compared to the Ursell
number,

Ur= 
HL

2

h 3

where h = water depth. The first harmonic ratios exhibit a linear trend and the second harmonic
ratios present some nonlinearity, as shown in Figure 9. HI/H and X1/X decrease linearly as the
Ursell number increases while Z1 /Z remains constant. H2/H and X2/X increase initially then
approach to a constant value while Z2/Z decreases slightly throughout the range of Ursell
numbers. This trend seems to agree with the previous finding shown in Figure 10 from Sarpkaya
and Isaacsson (Ref 15) on nonlinear shallow water wave forces on a vertical circular cylinder.

NUMERICAL RESULTS

The finite element procedure derived in the previous section on theoretical considerations
was executed in a computer program, NAUTILUS, coded in standard Fortran 77 language. This
procedure discretized the water body under consideration with a combination of three- and two-
dimensional finite element meshes. This feature permitted optimization of computer resources
while retaining the essential details of the physical problem under study. The discretization
resulted in a linear matrix, Equation 38, which was treated by a proven procedure based on the
frontal method developed by Irons (Ref 16). The solution gave a complete description of the
fluid activity in terms of velocity potentials. NAUTILUS presents the results in a convenient
form for practical application, including wave height distribution over the entire water surface,
wave-induced forces on the fixed structures, and the dynamic motion of the floating structures.
All computations are executed to the second harmonic.

NAUTILUS was used to reproduce the hydraulic model test described in the previous
section on experimental study. The results were used to verify the feasibility of the NAUTILUS
program. Since NAUTILUS does not include a wave generation mechanism to simulate the
wavemaker, the wave tank will be approximated with a channel of infinite length with a steady
second-order Stokes' wave approaching from one end of the channel. The water body within
three times of the barge length from the center of the barge is simulated with three-dimensional
element meshes, while the rest is approximated with two-dimensional element meshes. The
water body under consideration extends to a distance of ten barge lengths on each side.
Figure II illustrates the discretization of the model test setup. Wave parameters used in the
model test are entered into the numerical model for comparison with the forces observed from
the model test.
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The results of the wave forces predicted by the numerical model (in black symbols) are
presented along with the hydraulic model measurements (in white symbols) in Figure 9. The fair
agreement between the theoretical and the empirical results strongly supports the approach taken.

CONCLUSIONS

A second-order simulation model for three-dimensional wave-structural couplings in
moderate seas has been formulated. The results confirm the feasibility of reducing a weakly
nonlinear free surface problem by the perturbation method. This treatment eliminates the need
for specifying the unknown free surface, and allows the nonlinear problem to be addressed at the
well-defined mean water surface in the perturbation components. Each component forms a well-
defined linear boundary value problem that can be solved effectively. The present study solves
the component boundary value problems with a finite element procedure. This procedure, which
uses a combination of two- and three-dimensional finite elements, gives a good balance between
computation efficiency and fair proximation of the physical problem.

The wave-induced forces on a rectangular box held steady at the water surface were
studied both numerically and experimentally to examine the significance of the second-order
forces. The second-order forces were found to increase with the Ursell number, LH2/h3, which
is a measure of the wave steepness and the relative water depth, in a manner closely resembling
the second-order profile of a Cnoidal eave. This implies that the significance of the second-order
forces is similar to that of the second-order wave amplitude to the total amplitude of Cnoidal
waves. Hydraulic model measurement indicates that the second-order lateral forces induced by
steep waves in shallow water can be as large as 30 percent of the total lateral force. This
...onfirms the importance of the second-order forces in high sea states. Actual wave forces
experienced by ocean structures in rough seas can be much greater than those predicted by linear
theories. More importantly, the additional wave forces may occur at frequencies away from the
design wave frequency, and coincide with the resonance frequency of the structure of its
components and cause adverse effects. Ocean structures for use in high sea states must be
designed to withstand second-order forces.
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Table 1
Wave Parameters Used for the Hydraulic Model Test

(sec) (cm)

0.75 0.54, 1.09, 1.66, 2.11, 2.58, 3.13

1.00 0.52, 1.07, 1.60, 2.08, 2.55, 3.05

1.20 0.54, 1.52, 3.19, 5.09, 7.23, 9.23

1.58 0.69, 3.90, 4.98, 6.30, 8.48, 10.82
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Appendix

EXTENSION OF BERKHOFF'S WAVE THEORY

TO THE SECOND-ORDER WAVE PROBLEMS

BASIC EQUATIONS

Field equation:

V2 4€ - o (A-1)

Free surface equation:

a4 40 Q (A-2)
4€o €() + _ = -- , z=O

g az z

where:

Q = -i2w -(V4(Q)2+T -

Bottom Condition:

9+(2) ah a3,C) ah +a¢O)-3
+_ + L _ = 0, z =-h(xy) (A3)

ax ax ay ay az

The derivation of the reduced equation starts with basic Equations A-I through A-3 by

introducing dimensionless coordinates with the aid of the characteristic length L = g/W2 at the

free surface and the mean water depth H.

A-I



L = wave length
H = mean water depth

z h(x,y) = water depth

V z+h(x,y) = 0 = bottom surface
L x = characteristic length

w = wave frequency

H h(x,y)

Apply

x ,z -xL H I

y _Y h/ ,-h Y=-Y
L H I

and drop the superscript (2). The nondimensional governing equations given in Equations A-I

through A-3 are given as:

±!t + +_2 -2o4 (A-4)
ax' 2  ay12 (H)

a4_ 4W2 H * = f*(4(l)) H Q H (A-5)

az' g g

__ !! (a4 Lh+ 4,h 0, zO h' (A-6)

a8z' L ax' a! + ay' aý 0

A-2



Introducing:

H W2 H H•=•- a= , £-
g

Equations A-4 through A-6 can be written as:

. + I 0 in fl (A-7)
ax12  ay' 2  P 2 azt 2

a4 _ 5 4o = f', z =0 (A-8)
az'

/4 + e2(a O h + i h = 0, z/ =-hH -h/ (A-9)
az, ax' ax ay/ ay=

Assuming the potential function 40 can be written in the form:

40 (xy~z) = Z * (h, P z /) (P(x, y/, z'C)

and developing the function 4p into a Taylor-series with respect to e z/:

41(x,y,z) = Z*(( +ez/i + C12 ( +

Assuming a mild slope:

H EH <<[

Therefore:

4ý(x~y,z) - Z(h, z') o(X, y')(A-10)
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Substitute Equation A-10 into A-7, and assuming a mild slope (E << 1), we obtain a simplified

equation as

z-,29 -0,29. - = 0

-3x' ay / 2 i2 aZ/ 2

That is,

a 2,9. 0 -a2P) _ 1 0-2Z41( ax /2 ay / L2za/

The left-hand side of the above is a function of (x',y') only, while the right-hand side is a

function of z' only. Therefore:

I o °-P. = -4k 2  (A-11)

(P. a3x/ 2  ay f2

and

= 4k 2 , or = - L2 Z.4k 2  (A-12)42z a z' 2  az12

Substituting Equation A-10 into A-9:

Z jL*° + 2 z/ ZI h/
S + e(.-) 0 , z=-h
azI

Therefore:

a--.- = 0, z'-.h, e 2 .-0 (A-13)
az'
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Substituting Equation A-10 into A-8:

az 0o - 48Zq0o = f or az - 48Z = f'/q0 , Z/=O

8z' az'

Therefore, the simplified equations (assuming , << 1) are given as:

Laplace Equations:

I [± 9.. = -4k 2  (A-14)

a2Z = j22 Z-4k 2  (A-15)
az'2

Free Surface:

-E - 4 8 Z = f7 9P, z/=O (A-16)
az'

Bottom Condition:

aZ 0, z= -h/ (A- 17)azt

Solution of Z

From Equations A-15 and A-17, the following result can be obtained:

Z(h',z') = cosh2kI(z'+h') (A-18)
sinh4(k p h)
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or

cosh 2(t( +h)

Z~~)= sinh 4 (! h)

Set k/L = K ... wave number

Z(h,z) cosh2i(z +h) (A-19)
sinh4(.h)

Solution of p0

From Laplace Equations A-7 and A-10, we obtained:

z C z ~0' 4P. (P &z =0
ax,2 ay/ A 2 az /2

a-x" ÷ ay/2  v 2 az/2

Therefore:

Z2dZ'J(PO + y (. +± f Z(pZ4k2)dZ' = 0
fiz -X, -2-h/ ay' h

Z2dz/ V).+" P.- + (4k2 2(p.) dz 0(A20)
-h'f a' ay /2 f
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0

Value of f Z 2 dz/
_h/

From Equation A-19, the integration of Z2 can be written as:

f odz2 _ f cosh2(2k)pz'+h') d,
-h/ -h' sinh' (k p h')

f [cosh4kp(z/+h') + 1]dz'
2sinh(k ph) -h'

I 1 ---1 sinh 4kl Wz+hJ) +lI

2sinhY(kLgh') [4ki k*pIhj

I [ sinh4ktLh' ]h

2 sinh" (k tL h 1) 2(2 k) p I

sinh 4Itp h' _1 + 2(2 k)ph'
4kjpisinh(kjph') 2 2sinh2(2k)jih/I

= sinh2(2k)Ih' [1 + 2(2k) ph'
4kjisinhW(k ih') 2 2sinh2(2 k) p h'

or

fZ2dz2 = sinh2(2ic)h [1 + 2(2K)h ]

-h' 2 (2 K) H sinh(r.h) 2 2sinh2(2ic)hI

The group velocity, C., is:

1[+ 2%h ]C

C2 = CI)
2 /K 2
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Let

C = 2)-=II+ 2(2x)h ]C(2)
9 2 sinh (2 (2 ic) h)

and

[C(2f =(2 Wo)2

(2 i) 2

Therefore:

f Z2dz/ = sinh 2(2 ic) h C(2

fz~z g (A-21)

]1/ 22(2 K) H sinh'S(r h) C(2)

From free surface, bottom condition Equation A-16,

az -46Z = -- , z/=O

az' (p0

az (2k) sinh(2 k) p (z' + h')
az' ih( Lh) I/

(2 k)psinh(2 k) p h']

Therefore:

az 4_ Z (2kp) sinh(2 k) IL h' cosh 2 k p hl
az/ sinh 4(k p h') sinh4 (k g h')

(2 k IL) sinh(2 k) IA h/ - 4 8 cosh(2 k) p h'

sinh4 (k I h')

f.

A-8



Therefore:

1 f" 1

sinh4 (k p h) 20 2k p sinh (2 k) p h' - 4 8 cosh(2 k) p h'

Therefore:

1 (f) 2  1

sinhs (k p h') o2  [2 k p sinh(2 k) p hh - 4 8 cosh(2 k) p h']2

or

1 (f') 2

sin (K h) (p 0 2KHsinh(2K)h- 4 H cosh(2ich)j
gJ

Therefore:

0
f Z /dz sinh 2(2 K) h [C.IC2)]fh 2(2 v) H 22 )J2

hi22)HKrKHsinh(2 Y) h 4 2 H cosh(2 .h)

I. g

2
4P0

where:

[ " " = inh2(2 ) h(f -)2 Ca)/C(2)
2(2x)H 2 h]2 

(A-22)2 ZxHsinh(2K)h- 
4w2H cosh(2xh)

A-9



Therefore, Laplace Equation A-20 becomes:

I- !fL. - .L2 + 4k 2q0o V 0
(p2 aX2  ay2  2

0 vp0

Since , * 0,

a-'V-x + -) y F"±y) + 4 2 F'* = 0 (A-23)

Equation A-23 is the reduced diffraction-refraction equation.

A-10



DI•TRIBUTION LIST

ARMY / HQDA (DAEN-ZCM), WASHINGTON, DC
CNA / TECH LIB, ALEXANDRIA, VA
CNO / DCNO, LOGS, OP-0424C, WASHINGTON, DC
COMNAVBEACHGRU TWO / CO, NORFOLK, VA
NAVFACENGCOM / CO, ALEXANDRIA, VA
NAVFACENGCOM / CODE 03T, ALEXANDRIA, VA
NAVFACENGCOM / CODE 04A3C, ALEXANDRIA, VA
NAVFACENGCOM / CODE 06, ALEXANDRIA, VA
NSWC / CODE 1235, BETHESDA, MD
ONT / CODE 226, ARLINGTON, VA



DISTRIBUTION QUESTIONNAIRE

The Naval Civil Engineering Laboratory is revising Its primary distribution lists.

SUBJECT CATEGORIES

1 SHORE FACILITIES 3D Alternate energy source (geothermal power, photovoflac
1A Construction methods and materials (including corrosion power systems, solar systems, wind systems, energy

control, coatings) storage systems)
18 Waterfront structures (maintenance/deterioration control) 3E Site data and systems integration (energy resource data,
1 C Utilities (including power conditioning) integratn energy systems)
10 Explosives safety 3F EMCS design
1 E Aviation Engineering Test Facilities 4 ENVIRONMENTAL PROTECTION
1F Fire prevention and control 4A Solid waste management
IG Antenna technology 48 Hazawous/toxlo materials management
1 H Structural analysis and design (including numerical and 4C Waterwae management and sanitary engineenng

computer techniques) 4D 011 pollution removal and recovery
i. Protective construction (including hardened shelters, shock 4E Air pollution

and vibration studies) 4F Noise abatement
1K Soil/rock mechanics 5 OCEAN ENGINEERING
IL Airlields and pavements SA Seafioor soils and foundations
1 M Physical security 5B Seafloor construction systems and operations (including
2 ADVANCED BASE AND AMPHIBIOUS FACILITIES diver and manipulator tools)
2A Base facilities (including shelters, power generation, water 5C Undersea structures and materals

supplies) 50 Anchaors and moorngs
28 Expedient roadulairfields/bridges 5E Undersea power systems, electromechanical cables, anc
2C Over-the-beach operations (including breakwaters, wave connectors

forces) 5F Pressure vessel taciftles
20 POL storage, transfer, and distribution 5G Physical environment (including site surveying)
2E Polar engineering 5H Ocean-based concrete structures
3 ENERGY/POWER GENERATION 5J Hyperbaric chambers
3A Thermal conservation (thermal engineering of buildings, 5K Undersea cable dynamics

HVAC systems, energy loss measurement, power ARMY FEAP
generation) BOG Shore Facilities

38 Controls and electrical conservation (electrical systems, NRG Energy
energy monitoring and control systems) ENV Environmental/Natural Responses

3C Fuel flexibility (liquid fuels, coal utilization, energy from solid MGT Management
waste) PRR Pavements/Raikoads

TYPES OF DOCUMENTS

D - Techdata Sheets: R - Technical Reports and Technical Notes: G - NCEL Guides and Abstracts; I - Index to TMS: U - User

Guides; 0 None - remove my name

Old Address: New Address:

Telephone No.: Telephone No.:



INSTRUCTIONS

The Naval Civil Engineering Laboratory has revised its primary distriution lists. To help us verity
our records and update our data base, please do the following:

"* Add -circle number on list

"* Remove my name from all your lists -check box on list

"* Change my address - line out incorrect line and write in correction
(DO NOT REMOVE LABEL).

Number of copies should be entered after the title of the subject categories
you select.

Are we sending you the correct type of document? If not, drce the type(s) of
document(s) you want to receive Wsted on the back of this card.

Fold on line, staple, and drop in mail.
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NCEL DOCUMENT EVALUATION

You are number one with us; how do we rate with you?

We at NCEL want to provide you our customer the best possible reports but we need your help. Therefore, I ask you
to please take the time from your busy schedule to fill out this questionnaire. Your response will assist us in providing
the best reports possible for our users. I wish to thank you in advance for your assistance. I assure you that the
information you provide will help us to be more responsive to your future needs.

R. N. STORER, Ph.D. P.E.
Technical Director

DOCUMENT NO. TITLE OF DOCUMENT:

Date: Respondent Organization:

Name: Activity Code.
Phone: Grade/Rank:

Category (please check):

Sponsor _ User Proponent - Other (Specify)

Please answer on your behalf only; not on your organization's. Please check (use an X) only the block that most closely
describes your attitude or feeling toward that statement:

SA Strongly Agree A Agree 0 Neutral D Disagree SD Strongly Disagree

SA A N D SD SA A N D SD

1. The technical quality of the report () () () () () 6. The conclusions and recommenda- () () () () ()
is comparable to most of my other tions are clear and directly sup-
sources of technical information, ported by the contents of the

report.
2. The report will make significant () ( ) () ()

improvements in the cost and or 7. The graphics, tables, and photo- () () () ( )
performance of my operation. graphs are well done.

3. The report acknowledges related 0 0 0 0 0
work accomplished by others. Do you wish to continue getting r r IN

4. The report is well formatted. NCELreports? YES NO

Please add any comments (e.g.. in what ways can we
5. The report is clearly written. () () () () () improve the quality of our reports?) on the back of this

form.
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